2. Primjer: Hookeov zakon za ravninsko stanje naprezanja tijela

(Zadatak 1. primjer E) na str. 6 u "Vježbenica ispitnih zadataka", primjenom na PC modula "Napr_def.exe" paketa programa "CVRSTOCA").

U točki M tijela zadano je ravninsko stanje naprezanja u presjecima određenih s osi x i s osi \overline{y} , prema slici.

Treba odrediti grafički pomoću Mohrove kružnice naprezanja:

- a) normalna i posmična naprezanja u presjecima određenih s osi *x* i s osi \overline{x} , te odrediti kut φ između osi \overline{x} i osi *x*,
- b) glavne pravce i glavna naprezanja,
- c) maksimalno posmično naprezanje s pripadajućim normalnim naprezanjima i pravcima.

Skicirati orijentirane elemente u točki M tijela s ucrtanim komponentama naprezanja u svim koordinatnim sustavima.

Pomoću izraza Hookeovog zakona odrediti komponente deformacije u svim analiziranim koordinatnim sustavima, te skicirati orijentirane elemente s naznačenim komponentama deformacije. Nacrtati Mohrovu kružnicu deformacija za stanje deformacije u točki M tijela.

Zadano:
$$\sigma_x = 120 \text{ MPa}$$
, $\tau_{xy} = -50 \text{ MPa}$, $\overline{\sigma}_y = -60 \text{ MPa}$,
 $\overline{\tau}_{yx} = -80 \text{ MPa}$, $E = 207 \text{ GPa}$, $v = 0.32$.

Na slici elementa označeni su presjeci A i F sa zadanim pripadajućim naprezanjima.

Mjerilo za Mohrovu kružnicu naprezanja: 1 cm $\stackrel{\wedge}{=} 20$ MPa.

Mjerilo za Mohrovu kružnicu deformacija: $1 \text{ cm} \triangleq 100 \times 10^{-6}$.

Rješenje:

1. **Analitička rješenja** mogu se izračunati pomoću PC uporabom modula «Napr_def.exe» paketa programa «CVRSTOCA», zadatak E). U ovom su primjeru dobiveni rezultati za naprezanja, deformacije i kutove u analiziranim koordinatnim sustavima:

(0*xy*)-koord. sustav: $\sigma_y = -81,667 \text{ MPa}$, $\tau_{yx} = -50 \text{ MPa}$, slika a) Deformacije su: $\varepsilon_x = \frac{1}{E}(\sigma_x - v \cdot \sigma_y) = 705,598 \times 10^{-6}$, $\varepsilon_y = \frac{1}{E}(\sigma_y - v \cdot \sigma_x) = -580,032 \times 10^{-6}$, $\gamma_{xy} = \gamma_{yx} = \frac{\tau_{xy}}{G} = -637,681 \times 10^{-6} \text{ rad}$, slika a1)

 $(0\overline{x}\overline{y})$ - koord. sustav: $\overline{\sigma}_x = 98,333$ MPa , $\overline{\tau}_{xy} = -80$ MPa , $\varphi = 9,462^{\circ}$, slika b)

Deformacije su:
$$\overline{\varepsilon}_x = \frac{1}{E}(\overline{\sigma}_x - \nu \cdot \overline{\sigma}_y) = 567,794 \times 10^{-6}$$
, $\overline{\varepsilon}_y = \frac{1}{E}(\overline{\sigma}_y - \nu \cdot \overline{\sigma}_x) = -441,868 \times 10^{-6}$,
 $\overline{\gamma}_{xy} = \overline{\gamma}_{yx} = \frac{\overline{\tau}_{xy}}{G} = -1020,29 \times 10^{-6}$ rad, slika b1)

 $(0\sigma_1\sigma_2)$ - koord. sustav: $\sigma_1 = 131,716$ MPa , $\sigma_2 = -93,383$ MPa , $\varphi_0 = -13,188^\circ$, $\psi = -22,65^\circ$, slika c)

Glavne deformacije su:
$$\varepsilon_1 = \frac{1}{E}(\sigma_1 - \nu \cdot \sigma_2) = 780,669 \times 10^{-6}$$
,
 $\varepsilon_2 = \frac{1}{E}(\sigma_2 - \nu \cdot \sigma_1) = -654,743 \times 10^{-6}$, slika c1)

 $(0\overline{n}\overline{n}_1)$ - koord. sustav: $\sigma_s = 19,167 \text{ MPa}$, $\tau_{max} = 112,549 \text{ MPa}$, $\varphi_N = 31,812^\circ$, slika d)

Deformacije su: $\varepsilon_{s} = 62,963 \times 10^{-6}$, $\gamma_{xymax} = 1435,412 \times 10^{-6}$ rad, slika d1).

Pri tom je rabljen izračunati modul smičnosti materijala tijela:

$$G = \frac{E}{2(1+\nu)} = 78,409 \text{ GPa}.$$

Svi orijentirani elementi u točki M tijela s ucrtanim komponentama naprezanjima na presjecima, u svim zadanim koordinatnim sustavima, prikazani su na slikama a) do d).

2. Grafičko rješenje za naprezanja pomoću Mohrove kružnice naprezanja

U $(0\sigma\tau)$ -koordinatnom sustavu u zadanom mjerilu crtaju se točke A(120, -50) i

F(-60,-80) koje predstavljaju naprezanja na presjecima A i F, slika.

- Odredi se simetrala spojnice \overline{AF} .

- Sjecište te simetrale i osi σ određuje središte S kružnice.

- Iz središta S opiše se kružnica polumjera $R = \overline{AS} = \overline{SF}$.

- Kružnica siječe os σ u točkama C i D, čime su određene vrijednosti glavnih naprezanja u mjerilu $\sigma_1 = \overline{OC}$ i $\sigma_2 = \overline{OD}$.

- Paralela s osi x kroz točku A presijeca kružnicu u točki pola P Mohrove kružnice.

- Pravac PC definira kut φ_0 glavnog pravca 1 s osi *x*, a pravac PD je glavni pravac 2 u točki M tijela.

- Za određivanje naprezanja u presjeku određenom s osi y, povlači se iz pola P paralela s osi y do presjecišta s kružnicom u točki B, a također produlji se spojnica \overline{AS} do

presjecišta s kružnicom u točki B. Time su u mjerilu određeni iznosi naprezanja σ_y i τ_{yx} . - Pravac PF definira pravac osi \overline{y} u točki M tijela, a okomica na njega određuje pravac PE

tj. os \overline{x} koja presijeca kružnicu u točki E. Također, produlji se spojnica \overline{FS} do presjecišta s kružnicom u točki E, te su time u mjerilu određeni iznosi naprezanja $\overline{\sigma}_x$ i $\overline{\tau}_{xy}$. Pravac PE određuje kut φ koordinatne osi \overline{x} s osi x.

- Točke na okomici kroz središte S kružnice određuju točke G i H u kojima je maksimalno posmično naprezanje τ_{max} , a normalna naprezanja jednaka su srednjem normalnom naprezanju σ_{s} u točki M tijela.

- Pravac normale \overline{n} određen je kutom φ_N od osi *x* , povlačenjem pravca PG iz pola P.

- Orijentirani elementi s ucrtanim naprezanjima na presjecima prikazani su na slikama a), b), c) i d).

Napomena: Nakon izračunatih komponenti naprezanja u (0xy)- koordinatnom sustavu, može se grafičko rješenje dobiti uporabom modula «Mohr's circle» programa «MDSolids[®]».

3) **Grafičko određivanje komponenti deformacije** pomoću Mohrove kružnice deformacije

Mohrovu kružnicu deformacije u zadanom primjeru moguće je nacrtati kad je poznato stanje ravninske deformacije u (0xy)- koordinatnom sustavu, tj. iz ranije danih izraza Hookeovog zakona izračunate su komponente deformacije ε_x , ε_y i $\gamma_{xy} = \gamma_{yx}$ koje se odnose na pravce *x* i *y* u točki M tijela, slika a1).

Svi orijentirani elementi u točki M tijela s ucrtanim komponentama deformacija u svim zadanim koordinatnim sustavima, prikazani su na slikama a1) do d1).

- U $\left(0\varepsilon_{\frac{1}{2}}\gamma\right)$ -koordinatnom sustavu ucrtaju se točke A $(\varepsilon_x, \frac{1}{2}\gamma_{xy})$ i B $(\varepsilon_y, \frac{1}{2}\gamma_{yx})$ koje odgovaraju presjecima A i B, određenih osima *x* i *y*, te se konstruira kružnica koja prolazi točkama A i B, a njeno je središte S na osi ε . Središte S $(\varepsilon_s, 0)$ kružnice nalazi se u presjecištu osi ε i dužine \overline{AB} , slika. Apscise presjecišta C i D kružnice s osi ε predstavljaju glavne deformacije ε_1 i ε_2 u točki tijela. Element u glavnim pravcima ne mijenja svoj oblik, tj. pravi kutovi ostaju pravi, slika c1). Glavna deformacija $\varepsilon_1 = \varepsilon_{max}$ određena je točkom C $(\varepsilon_1, 0)$, a druga glavna deformacija $\varepsilon_2 = \varepsilon_{min}$ određena je točkom D $(\varepsilon_2, 0)$.

- Kroz točku A povlači se paralela s normalom u A na elementu, tj. s osi *x* i ona presijeca kružnicu u točki pola P. Pravci 1 i 2 koji prolaze kroz pol P i točke C i D. Kut φ_0 mjeren od osi *x* određuje glavni pravac 1. Deformirani element u okolišu promatrane točke M tijela u glavnim pravcima deformacija prikazan je na slici c1).

- Komponente deformacije u točki M tijela za zarotirani $(0\overline{x}\overline{y})$ - koordinatni sustav, slika b1), gdje je φ kut rotacije od osnovnog (0xy)- koordinatnog sustava, jednostavno se određuju tako da se iz pola P povlače paralele s osi \overline{x} i s osi \overline{y} . Ti pravci sijeku Mohrovu

kružnicu u točki E kojoj apscisa i ordinata određuju komponente deformacije $\bar{\varepsilon}_x$ i $\frac{1}{2}\bar{\gamma}_{xy}$,

odnosno na presjecištu osi \bar{y} u točki F određene su komponente deformacije $\bar{\varepsilon}_{y}$ i $\frac{1}{2}\bar{\gamma}_{yx}$.

- Vrijednosti maksimalne kutne deformacije $\gamma_{xy \max}$ i pripadajući pravac normale presjeka \overline{n} definiran kutom φ_N određeni su točkom $G(\varepsilon_S, \frac{1}{2}\gamma_{xy\max})$, odnosno pravcem \overline{n}_1 kroz točku $H(\varepsilon_S, \frac{1}{2}\gamma_{xy\max})$ na Mohrovoj kružnici deformacija. Za te osi sve duljinske deformacije jednake su srednjoj duljinskoj deformaciji ε_S u točki M tijela. Deformacije elementa u

okolišu promatrane točke M tijela u tim pravcima, kod maksimalne kutne deformacije $\gamma_{xy \text{ max}}$, prikazane su na slici d1).

Napomena: Nakon izračunatih komponenti deformacija u (0xy)- koordinatnom sustavu, može se grafičko rješenje Mohrove kružnice deformacije dobiti uporabom modula «Mohr's circle» programa «MDSolids[®]».