2. Primjer: Sastavljena debela cijev opterećena unutarnjim tlakom

Sastavljena debela cijev sastoji se od unutarnje cijevi (I) polumjera r_1 i r_2 , te vanjske cijevi (II) polumjera r_2 i r_3 , slika 1.a). Cijev je opterećena jednolikim unutarnjim tlakom p_1 . Tlak na sastavu cijevi je p_d (nakon prisilnog sastavljanja, a prije opterećivanja cijevi), slika 1.b).

Treba odrediti:

- 1. vrijednosti radijalnih i cirkularnih naprezanja σ_r i σ_{φ} , uz skice raspodjele naprezanja po presjeku cijevi i to:
- a) za unutarnju (I) i vanjsku cijev (II) opterećene na sastavu cijevi tlakom $p_{\rm d}$, slika 1.b)
- b) za cijev od jednog dijela, polumjera r_1 i r_3 te opterećenu unutarnjim tlakom p_1 , slika 1.c)
- c) za sastavljenu cijev, polumjera r_1 , r_2 i r_3 opterećenu unutarnjim tlakom p_1 , slika 1.d), ako je zadano:

$$r_1, \quad r_2 = r_1 \sqrt{2}, \quad r_3 = 2 r_1, \quad p_1, \quad p_d = \frac{1}{6} p_1,$$

- 2. dopuštenu vrijednost unutarnjeg tlaka p_{1dop} sastavljene cijevi prema teoriji najvećeg posmičnog naprezanja τ_{max} , ako je dopušteno naprezanje materijala: $\sigma_{dop} = 420 \text{ MPa}$,
- 3. vrijednost prijeklopa δ na mjestu sastava cijevi kod poznatog dodirnog tlaka p_d , ako je zadano: $r_1 = 2.5$ cm, $p_1 = p_{dop}$, E = 210 GPa, $\nu = 0.3$,
- 4. numeričke vrijednosti naprezanja σ_r i σ_{φ} , uz skice raspodjele naprezanja te pomake točaka površina cijevi, ako je zadano:

$$r_1 = 25 \text{ mm}, r_2 = r_1 \sqrt{2}, r_3 = 2r_1, p_d = \frac{1}{6}p_1, p_1 = 210 \text{ MPa}$$

1. Vrijednosti radijalnih i cirkularnih naprezanja u dijelovima cijevi

a) unutarnja (I) i vanjska cijev (II) opterećene na sastavu tlakom p_d, slika 1.b)

Vrijednosti radijalnih σ_r i cirkularnih naprezanja σ_{φ} određuju se prema <u>izrazima</u> (59a) za unutarnju cijev (I), te prema <u>izrazima (59b)</u> za vanjsku cijev (I I), a na slici 2.a) dana je raspodjela naprezanja u presjecima cijevi nakon prisilnog spajanja:

- unutarnja cijev (I):

$$(\sigma'_{r})_{r=r_{1}} = 0, \ (\sigma'_{r})_{r=r_{2}} = -p_{d} = -\frac{1}{6}p_{1},$$
$$(\sigma'_{\varphi})_{r=r_{1}} = -p_{d} \cdot \frac{2r_{2}^{2}}{r_{2}^{2} - r_{1}^{2}} = -\frac{p_{1}}{6} \cdot \frac{2 \cdot 2}{2 - 1} = -\frac{2}{3}p_{1},$$
$$(\sigma'_{\varphi})_{r=r_{2}} = -p_{d} \cdot \frac{r_{2}^{2} + r_{1}^{2}}{r_{2}^{2} - r_{1}^{2}} = -\frac{p_{1}}{6} \cdot \frac{2 + 1}{2 - 1} = -\frac{1}{2}p_{1},$$

- vanjska cijev (II):

$$(\sigma'_{r})_{r=r_{2}} = -p_{d} = -\frac{1}{6}p_{1}, \quad (\sigma'_{r})_{r=r_{3}} = 0,$$

$$(\sigma'_{\varphi})_{r=r_{2}} = p_{d} \cdot \frac{r_{3}^{2} + r_{2}^{2}}{r_{3}^{2} - r_{2}^{2}} = \frac{p_{1}}{6} \cdot \frac{2^{2} + 2}{2^{2} - 2} = \frac{1}{2}p_{1}, \quad (\sigma'_{\varphi})_{r=r_{3}} = p_{d} \cdot \frac{2r_{2}^{2}}{r_{3}^{2} - r_{2}^{2}} = \frac{p_{1}}{6} \cdot \frac{2 \cdot 2}{2^{2} - 2} = \frac{1}{3}p_{1}.$$

b) cijev od jednog dijela (r_1 , r_3), djeluje samo unutarnji tlak p_1 , slika 1.c)

Prema <u>izrazima (60a) i (60b)</u> vrijednosti naprezanja na unutarnjoj i vanjskoj površini debele cijevi opterećene unutarnjim tlakom p_1 su (prikaz naprezanja na slici 2.b):

$$(\sigma''_{r})_{r=r_{1}} = -p_{1} \cdot (\sigma''_{r})_{r=r_{3}} = 0,$$

$$(\sigma''_{r})_{r=r_{2}} = p_{1} \cdot \frac{r_{1}^{2}}{r_{3}^{2} - r_{1}^{2}} \cdot \left[1 - \frac{r_{3}^{2}}{r_{2}^{2}}\right] = -\frac{1}{3} p_{1},$$

$$(\sigma''_{\varphi})_{r=r_{1}} = p_{1} \cdot \frac{r_{3}^{2} + r_{1}^{2}}{r_{3}^{2} - r_{1}^{2}} = p_{1} \cdot \frac{2^{2} + 1}{2^{2} - 1} = \frac{5}{3} p_{1},$$

$$(\sigma''_{\varphi})_{r=r_{2}} = p_{1} \cdot \frac{r_{1}^{2}}{r_{3}^{2} - r_{1}^{2}} \cdot \left[1 + \frac{r_{3}^{2}}{r_{2}^{2}}\right] = p_{1} \cdot \frac{1}{3} \cdot 3 = p_{1},$$

$$(\sigma''_{\varphi})_{r=r_{3}} = p_{1} \cdot \frac{2r_{1}^{2}}{r_{3}^{2} - r_{1}^{2}} = p_{1} \cdot \frac{2}{2^{2} - 1} = \frac{2}{3} p_{1}.$$

c) za sastavljenu cijev opterećenu unutarnjim tlakom p₁, slika 1.d)

Vrijednosti radijalnih i cirkularnih naprezanja na unutarnjoj i vanjskoj površini debele cijevi opterećene unutarnjim tlakom p_1 mogu se izračunati prema <u>izrazima (61a,b,c)</u> ili odrediti primjenom metode superpozicije zbrajanjem odgovarajućih komponenti naprezanja iz rješenja pod 1.a) i 1.b). Rezultati su dani u tablici i grafički na slici 2.c):

Tlak opter.	Kom.	Cijev (I)		Cijev (II)		2.c) tlak p_1 i dodirni tlak p_d		
	napr.	r_1	r_2	r_2	r_3	σ $\frac{3}{2}p_1$		
a) samo <i>p</i> a	σ'_r	0	$-\frac{1}{6}p_1$	$-\frac{1}{6}p_1$	0	$\square \xrightarrow{2} \sigma_{\varphi}^{\text{II}} \xrightarrow{p} \rho_{\varphi}^{\text{II}}$		
	σ'_{arphi}	$-\frac{2}{3}p_1$	$-\frac{1}{2}p_1$	$\frac{1}{2}p_1$	$\frac{1}{3}p_1$	$\begin{array}{c c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$		
b) samo <i>p</i> 1	σ''_r	- <i>p</i> ₁	$-\frac{1}{3}p_1$	$-\frac{1}{3}p_1$	0	$ \oplus \overline{2}^{p_1} $		
	$\sigma^{\prime\prime}{}_{arphi}$	$\frac{5}{3}p_1$	p_1	p_1	$\frac{2}{3}p_1$	0		
c) $p_1 + p_d$	σ_r	- <i>p</i> ₁	$-\frac{1}{2}p_1$	$-\frac{1}{2}p_1$	0	p_1 O_r r_1 O_r $-\frac{1}{2}p_1$		
	σ_{arphi}	p_1	$\frac{1}{2}p_1$	$\frac{3}{2}p_1$	p_1	$\begin{array}{ $		

Iz tablice i slike 2.c) vidi se, da su se u sastavljenoj debeloj cijevi vrijednosti cirkularnih

naprezanja smanjile u unutarnjoj cijevi, ali su se povećale u vanjskoj cijevi u odnosu na vrijednosti cirkularnih naprezanja u cijevi iz jednog dijela (slika 2.b), kod jednakog unutarnjeg tlaka p_1 u cijevi.

2. Vrijednost dopuštenog unutarnjeg tlaka $p_{1 dop}$ u sastavljenoj cijevi

Najveća su naprezanja u točkama unutarnjih površina debelih cijevi (I) i (II), gdje vlada dvoosno stanje naprezanja, a iznosi glavnih naprezanja su (na slici elementa):

(I):
$$\sigma_1 = (\sigma_{\varphi})_{r=r_1} = p_1, \ \sigma_2 = \sigma_x = 0, \ \sigma_3 = (\sigma_r)_{r=r_1} = -p_1,$$

(II):
$$\sigma_1 = (\sigma_{\varphi})_{r=r_2} = \frac{3}{2} p_1, \ \sigma_2 = \sigma_x = 0, \ \sigma_3 = (\sigma_r)_{r=r_2} = -\frac{1}{2} p_1.$$

Maksimalno ekvivalentno naprezanje prema teoriji najvećeg posmičnog naprezanja τ_{max} jednako je u tim točkama za obje cijevi:

$$\sigma_{\rm ekv}^{\rm I} = \sigma_1 - \sigma_3 = p_1 - (-p_1) = 2p_1 \quad \text{i} \quad \sigma_{\rm ekv}^{\rm II} = \sigma_1 - \sigma_3 = \frac{3}{2}p_1 - (-\frac{1}{2}p_1) = 2p_1,$$

tj.:
$$(\sigma_{\text{ekv}})_{\text{max}} = (\sigma_{\text{ekv}}^{\text{I}})_{\text{max}} = (\sigma_{\text{ekv}}^{\text{II}})_{\text{max}} = 2p_1.$$

Vrijednost dopuštenog unutarnjeg tlaka u sastavljenoj cijevi jest:

$$(\sigma_{\rm ekv})_{\rm max} \le \sigma_{\rm dop} \Rightarrow 2p_1 \le \sigma_{\rm dop} \Rightarrow p_{\rm 1dop} \le \frac{1}{2}\sigma_{\rm dop} = \frac{1}{2} \cdot 420 = 210 \text{ MPa} = 2100 \text{ bar}.$$

3. Vrijednost prijeklopa δ u sastavljenoj cijevi kod zadanog tlaka $p_{ m d}$

Vidljivo je, da zadane vrijednosti polumjera dijelova cijevi u ovom primjeru ispunjavaju uvjet polumjera, tzv. Gadolinov uvjet:

$$r_2 = \sqrt{r_1 \cdot r_3} = \sqrt{r_1 \cdot 2r_1} = r_1 \sqrt{2}$$
,

te su tada vrijednosti ekvivalentnih naprezanja minimalne.

U tom je slučaju optimalna vrijednost dodirnog tlaka p_d na sastavu cijevi ($r = r_2$), kod opterećenja unutarnjim radnim tlakom p_1 :

$$p_{\rm d} = \frac{p_1}{2} \cdot \frac{r_3 - r_1}{r_3 + r_1} = \frac{p_1}{2} \cdot \frac{2 - 1}{2 + 1} = \frac{1}{6} p_1,$$

kako je i zadano u primjeru.

Vrijednost dodirnog tlaka p_d na sastavu cijevi ($r = r_2$), kod opterećenja cijevi unutarnjim radnim tlakom $p_1 = p_{1dop} = 210$ MPa, prema zadanom uvjetu zadatka jest:

$$p_{\rm d} = \frac{1}{6} p_1 = \frac{210}{6} = 35 \text{ MPa}.$$

Vrijednost prijeklopa δ kod prisilnog sastavljanja cijevi u tom slučaju odgovara vrijednosti optimalnog prijeklopa, tj.:

$$\delta = \delta_{\text{opt}} = \frac{p_1}{E} \cdot r_2 = \frac{210}{2.1 \cdot 10^5} \cdot 25\sqrt{2} = 0.0354 \text{ mm}.$$

Ova vrijednost odgovara steznom spoju H7/u8, gdje su za $d_N = 2r_2 \cong 71 \text{ mm}$ prema <u>tablici</u> tolerancije prijeklopa</u> odstupanja promjera $-70/-134 \text{ }\mu\text{m}$.

4. Numeričke vrijednosti naprezanja, prijeklopa i radijalnih pomaka sastavljene cijevi kod zadanog unutarnjeg tlaka $p_1 = 210$ MPa

Prema ranije dobivenim vrijednostima danim u tablici, izračunate su numeričke vrijednosti radijalnih i cirkularnih komponenti naprezanja u sastavljenoj cijevi kod opterećenja unutarnjim tlakom $p_1 = 210$ MPa te su dane u tablici (u MPa) i u grafičkom prikazu na slici 2.d).

Vrijednosti radijalnih i cirkularnih komponenti naprezanja u MPa.

Tlak	Kom.	Cije	v (I)	Cijev (II)	
opter.	napr.	r_1	r_2	r_2	r_3
a)	σ'_r	0	-35	-35	0
samo <i>p</i> d	$\sigma'_{\scriptscriptstyle arphi}$	-140	-105	105	70
b)	σ''_r	-210	-70	-70	0
samo p 1	$\sigma^{\prime\prime}{}_{arphi}$	350	210	210	140
c)	σ_r	-210	-105	-105	0
$p_1 + p_d$	$\sigma_{_{arphi}}$	210	105	315	210

Radijalni pomaci površina sastavnih cijevi

Radijalni pomaci površina sastavnih cijevi mogu se odrediti jednostavnije kad se odredi tlak p_2 na dodiru sastavnih cijevi kod opterećenja sastavljene cijevi unutarnjim tlakom p_1 , slika 1.d). Vrijednost tlaka p_2 na površinama dodira sastavnih cijevi I i II sastavljene cijevi, prema <u>izrazu (62)</u> jest:

$$p_{2} = \left| (\sigma_{r})_{r=r_{2}} \right| = p_{d} - p_{1} \cdot \frac{r_{1}^{2}}{r_{3}^{2} - r_{1}^{2}} \cdot \left[1 - \frac{r_{3}^{2}}{r_{2}^{2}} \right] = p_{1} \left[\frac{1}{6} - \frac{1}{2^{2} - 1} \cdot \left(1 - \frac{2^{2}}{2} \right) \right] = \frac{1}{2} p_{1} = \frac{210}{2} = 105 \text{ MPa} .$$

Radijalni pomaci na unutarnjoj, dodirnoj i vanjskoj površini sastavljene cijevi, tj. povećanja polumjera sastavnih cijevi kod opterećenja cijevi unutarnjim tlakom p_1 su:

- za unutarnju cijev (I) prema izrazima (64a, 64b):

$$(u^{1})_{r=r_{1}} = \frac{p_{1} \cdot r_{1}}{E} \cdot \left(\frac{r_{2}^{2} + r_{1}^{2}}{r_{2}^{2} - r_{1}^{2}} + \nu\right) - \frac{p_{2} \cdot 2r_{1}}{E} \cdot \frac{r_{2}^{2}}{r_{2}^{2} - r_{1}^{2}} = \frac{210 \cdot 25}{2,1 \cdot 10^{5}} \cdot \left[\frac{2+1}{2-1} + 0,3 - \frac{1}{2} \cdot \frac{2 \cdot 2}{2-1}\right] = 0,0325 \text{ mm},$$

$$(u^{1})_{r=r_{2}} = \frac{p_{1} \cdot r_{1}^{2} \cdot 2r_{2}}{E \cdot (r_{2}^{2} - r_{1}^{2})} - \frac{p_{2} \cdot r_{2}}{E} \cdot \left(\frac{r_{2}^{2} + r_{1}^{2}}{r_{2}^{2} - r_{1}^{2}} - \nu\right) = \frac{210 \cdot 25\sqrt{2}}{2.1 \cdot 10^{5}} \cdot \left[\frac{2 \cdot 1}{2 - 1} - \frac{1}{2} \cdot (3 - 0.3)\right] = 0.023 \text{ mm},$$

- za vanjsku cijev (II) prema izrazima (64c, 64d):

$$(u^{11})_{r=r_2} = \frac{p_2 \cdot r_2}{E} \cdot \left(\frac{r_3^2 + r_2^2}{r_3^2 - r_2^2} + \nu\right) = \frac{105 \cdot 25\sqrt{2}}{2,1 \cdot 10^5} \cdot \left[\frac{2^2 + 2}{2^2 - 2} + 0,3\right] = 0,0584 \text{ mm},$$

tj. vrijedi: $(u^{II})_{r=r_2} = (u^{II})_{r=r_2} + \delta = 0,023 + 0,0354 = 0,0584 \text{ mm}$,

$$(u^{\text{II}})_{r=r_3} = \frac{p_2 \cdot 2r_3}{E} \cdot \frac{r_2^2}{r_3^2 - r_2^2} = \frac{105 \cdot 2 \cdot 50}{2.1 \cdot 10^5} \cdot \frac{2}{2^2 - 2} = 0,050 \text{ mm}.$$